博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【大数据】Spark基础解析
阅读量:6209 次
发布时间:2019-06-21

本文共 11803 字,大约阅读时间需要 39 分钟。

1Spark概述

1.1 什么是Spark

 

1.2 Spark内置模块

 

Spark Core实现了Spark的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。Spark Core中还包含了对弹性分布式数据集(Resilient Distributed DataSet,简称RDD)API定义。

Spark SQLSpark用来操作结构化数据的程序包。通过Spark SQL,我们可以使用 SQL或者Apache Hive版本的SQL方言(HQL)来查询数据。Spark SQL支持多种数据源,比如Hive表、Parquet以及JSON等。

Spark StreamingSpark提供的对实时数据进行流式计算的组件。提供了用来操作数据流的API,并且与Spark Core中的 RDD API高度对应。

Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。

集群管理器:Spark 设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计 算。为了实现这样的要求,同时获得最大灵活性,Spark支持在各种集群管理器(Cluster Manager)上运行,包括Hadoop YARNApache Mesos,以及Spark自带的一个简易调度 器,叫作独立调度器。

 Spark得到了众多大数据公司的支持,这些公司包括HortonworksIBMIntelClouderaMapRPivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群。

1.3 Spark特点

 

2Spark运行模式

2.1 Spark安装地址

1.官网地址

2.文档查看地址

3.下载地址

2.2 重要角色

2.2.1 Driver驱动器

Spark的驱动器是执行开发程序中的main方法的进程。它负责开发人员编写的用来创建SparkContext、创建RDD,以及进行RDD的转化操作和行动操作代码的执行。如果你是用spark shell,那么当你启动Spark shell的时候,系统后台自启了一个Spark驱动器程序,就是在Spark shell中预加载的一个叫作 scSparkContext对象。如果驱动器程序终止,那么Spark应用也就结束了。主要负责:

1)把用户程序转为任务

2)跟踪Executor的运行状况

3)为执行器节点调度任务

4UI展示应用运行状况

2.2.2 Executor执行器

Spark Executor是一个工作进程,负责在 Spark 作业中运行任务,任务间相互独立。Spark 应用启动时,Executor节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。主要负责:

1)负责运行组成 Spark 应用的任务,并将结果返回给驱动器进程;

2)通过自身的块管理器(Block Manager)为用户程序中要求缓存的RDD提供内存式存储。RDD是直接缓存在Executor进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

2.3 Local模式

2.3.1 概述

 

2.3.2 安装使用

1)上传并解压spark安装包

[atguigu@hadoop102 sorfware]$ tar -zxvf spark-2.1.1-bin-hadoop2.7.tgz -C /opt/module/

[atguigu@hadoop102 module]$ mv spark-2.1.1-bin-hadoop2.7 spark

2)官方求PI案例

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--executor-memory 1G \

--total-executor-cores 2 \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

1)基本语法

bin/spark-submit \

--class <main-class>

--master <master-url> \

--deploy-mode <deploy-mode> \

--conf <key>=<value> \

... # other options

<application-jar> \

[application-arguments]

2)参数说明:

--master 指定Master的地址,默认为Local

--class: 你的应用的启动类 (如 org.apache.spark.examples.SparkPi)

--deploy-mode: 是否发布你的驱动到worker节点(cluster) 或者作为一个本地客户端 (client) (default: client)*

--conf: 任意的Spark配置属性, 格式key=value. 如果值包含空格,可以加引号“key=value”

application-jar: 打包好的应用jar,包含依赖. 这个URL在集群中全局可见。 比如hdfs:// 共享存储系统, 如果是 file:// path 那么所有的节点的path都包含同样的jar

application-arguments: 传给main()方法的参数

--executor-memory 1G 指定每个executor可用内存为1G

--total-executor-cores 2 指定每个executor使用的cup核数为2

3)结果展示

该算法是利用蒙特·卡罗算法求PI

 

4)准备文件

[atguigu@hadoop102 spark]$ mkdir input

input下创建3个文件1.txt2.txt,并输入以下内容

hello atguigu

hello spark

5)启动spark-shell

[atguigu@hadoop102 spark]$ bin/spark-shell

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).

18/09/29 08:50:52 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

18/09/29 08:50:58 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException

Spark context Web UI available at http://192.168.9.102:4040

Spark context available as 'sc' (master = local[*], app id = local-1538182253312).

Spark session available as 'spark'.

Welcome to

      ____              __

     / __/__  ___ _____/ /__

    _\ \/ _ \/ _ `/ __/  '_/

   /___/ .__/\_,_/_/ /_/\_\   version 2.1.1

      /_/

         

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_144)

Type in expressions to have them evaluated.

Type :help for more information.

 

scala>

开启另一个CRD窗口

[atguigu@hadoop102 spark]$ jps

3627 SparkSubmit

4047 Jps

可登录hadoop102:4040查看程序运行

 

6)运行WordCount程序

scala>sc.textFile("input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect

res0: Array[(String, Int)] = Array((hadoop,6), (oozie,3), (spark,3), (hive,3), (atguigu,3), (hbase,6))

 

scala>

可登录hadoop102:4040查看程序运行

 

7WordCount程序分析

提交任务分析:

 

数据流分析:

textFile("input"):读取本地文件input文件夹数据;

flatMap(_.split(" ")):压平操作,按照空格分割符将一行数据映射成一个个单词;

map((_,1)):对每一个元素操作,将单词映射为元组;

reduceByKey(_+_):按照key将值进行聚合,相加;

collect:将数据收集到Driver端展示。

 

2.4 Standalone模式

2.4.1 概述

构建一个由Master+Slave构成的Spark集群,Spark运行在集群中。

 

2.4.2 安装使用

1)进入spark安装目录下的conf文件夹

[atguigu@hadoop102 module]$ cd spark/conf/

2)修改配置文件名称

[atguigu@hadoop102 conf]$ mv slaves.template slaves

[atguigu@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh

3)修改slave文件,添加work节点:

[atguigu@hadoop102 conf]$ vim slaves

 

hadoop102

hadoop103

hadoop104

4)修改spark-env.sh文件,添加如下配置:

[atguigu@hadoop102 conf]$ vim spark-env.sh

 

SPARK_MASTER_HOST=hadoop102

SPARK_MASTER_PORT=7077

5)分发spark

[atguigu@hadoop102 module]$ xsync spark/

6)启动

[atguigu@hadoop102 spark]$ sbin/start-all.sh

[atguigu@hadoop102 spark]$ util.sh

================atguigu@hadoop102================

3330 Jps

3238 Worker

3163 Master

================atguigu@hadoop103================

2966 Jps

2908 Worker

================atguigu@hadoop104================

2978 Worker

3036 Jps

网页查看:hadoop102:8080

注意如果遇到 “JAVA_HOME not set” 异常可以在sbin目录下的spark-config.sh 文件中加入如下配置:

export JAVA_HOME=XXXX

7)官方求PI案例

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master spark://hadoop102:7077 \

--executor-memory 1G \

--total-executor-cores 2 \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

 

8)启动spark shell

/opt/module/spark/bin/spark-shell \

--master spark://hadoop102:7077 \

--executor-memory 1g \

--total-executor-cores 2

参数:--master spark://hadoop102:7077指定要连接的集群的master

执行WordCount程序

scala>sc.textFile("input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect

res0: Array[(String, Int)] = Array((hadoop,6), (oozie,3), (spark,3), (hive,3), (atguigu,3), (hbase,6))

 

scala>

2.4.3 JobHistoryServer配置

1)修改spark-default.conf.template名称

[atguigu@hadoop102 conf]$ mv spark-defaults.conf.template spark-defaults.conf

2)修改spark-default.conf文件,开启Log

[atguigu@hadoop102 conf]$ vi spark-defaults.conf

spark.eventLog.enabled           true

spark.eventLog.dir               hdfs://hadoop102:9000/directory

注意:HDFS上的目录需要提前存在。

3)修改spark-env.sh文件,添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

 

export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080

-Dspark.history.retainedApplications=30

-Dspark.history.fs.logDirectory=hdfs://hadoop102:9000/directory"

参数描述:

spark.eventLog.dirApplication在运行过程中所有的信息均记录在该属性指定的路径下;

spark.history.ui.port=18080  WEBUI访问的端口号为18080

spark.history.fs.logDirectory=hdfs://hadoop102:9000/directory  配置了该属性后,在start-history-server.sh时就无需再显的指定路径,Spark History Server页面只展示该指定路径下的信息

spark.history.retainedApplications=30指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

4)分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-defaults.conf

[atguigu@hadoop102 conf]$ xsync spark-env.sh

5)启动历史服务

[atguigu@hadoop102 spark]$ sbin/start-history-server.sh

6)再次执行任务

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master spark://hadoop102:7077 \

--executor-memory 1G \

--total-executor-cores 2 \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

7)查看历史服务

hadoop102:18080

 

2.4.4 HA配置

 

1 HA架构图

1zookeeper正常安装并启动

2)修改spark-env.sh文件添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

 

注释掉如下内容:

#SPARK_MASTER_HOST=hadoop102

#SPARK_MASTER_PORT=7077

添加上如下内容:

export SPARK_DAEMON_JAVA_OPTS="

-Dspark.deploy.recoveryMode=ZOOKEEPER

-Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104 

-Dspark.deploy.zookeeper.dir=/spark"

3)分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-env.sh

4)在hadoop102上启动全部节点

[atguigu@hadoop102 spark]$ sbin/start-all.sh

5)在hadoop103上单独启动master节点

[atguigu@hadoop103 spark]$ sbin/start-master.sh

6spark HA集群访问

/opt/module/spark/bin/spark-shell \

--master spark://hadoop102:7077,hadoop103:7077 \

--executor-memory 2g \

--total-executor-cores 2

2.5 Yarn模式

2.5.1 概述

Spark客户端直接连接Yarn不需要额外构建Spark集群。yarn-clientyarn-cluster两种模式,主要区别在于:Driver程序的运行节点。

yarn-clientDriver程序运行在客户端,适用于交互、调试,希望立即看到app的输出

yarn-clusterDriver程序运行在由RMResourceManager)启动的APAPPMaster适用于生产环境

 

2.5.2 安装使用

1)修改hadoop配置文件yarn-site.xml,添加如下内容:

[atguigu@hadoop102 hadoop]$ vi yarn-site.xml

        <!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

        <property>

                <name>yarn.nodemanager.pmem-check-enabled</name>

                <value>false</value>

        </property>

        <!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

        <property>

                <name>yarn.nodemanager.vmem-check-enabled</name>

                <value>false</value>

        </property>

2)修改spark-env.sh,添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

 

YARN_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop

3)分发配置文件

[atguigu@hadoop102 conf]$ xsync /opt/module/hadoop-2.7.2/etc/hadoop/yarn-site.xml

[atguigu@hadoop102 conf]$ xsync spark-env.sh

4)执行一个程序

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master yarn \

--deploy-mode client \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

注意:在提交任务之前需启动HDFS以及YARN集群。

2.5.3 日志查看

1)修改配置文件spark-defaults.conf

添加如下内容:

spark.yarn.historyServer.address=hadoop102:18080

spark.history.ui.port=4000

2)重启spark历史服务

[atguigu@hadoop102 spark]$ sbin/stop-history-server.sh

stopping org.apache.spark.deploy.history.HistoryServer

[atguigu@hadoop102 spark]$ sbin/start-history-server.sh

starting org.apache.spark.deploy.history.HistoryServer, logging to /opt/module/spark/logs/spark-atguigu-org.apache.spark.deploy.history.HistoryServer-1-hadoop102.out

3)提交任务到Yarn执行

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master yarn \

--deploy-mode client \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

4Web页面查看日志

 

 

2.6 Mesos模式

Spark客户端直接连接Mesos不需要额外构建Spark集群。国内应用比较少,更多的是运用yarn调度。

2.7 几种模式对比

模式

Spark安装机器数

需启动的进程

所属者

Local

1

Spark

Standalone

3

MasterWorker

Spark

Yarn

1

YarnHDFS

Hadoop

3 案例实操

Spark Shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在IDE中编制程序,然后打成jar包,然后提交到集群,最常用的是创建一个Maven项目,利用Maven来管理jar包的依赖。

3.1 编写WordCount程序

1)创建一个Maven项目WordCount并导入依赖

<dependencies>

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>2.1.1</version>
    </dependency>
</dependencies>

<build>

        <finalName>WordCount</finalName>

        <plugins>

<plugin>

                <groupId>net.alchim31.maven</groupId>

<artifactId>scala-maven-plugin</artifactId>

                <version>3.2.2</version>
                <executions>
                    <execution>
                       <goals>
                          <goal>compile</goal>
                          <goal>testCompile</goal>
                       </goals>
                    </execution>
                 </executions>
            </plugin>

        </plugins>

</build>

2)编写代码

package com.atguigu

import org.apache.spark.{SparkConf, SparkContext}
object WordCount{
  def main(args: Array[String]): Unit = {

//1.创建SparkConf并设置App名称

    val conf = new SparkConf().setAppName("WC")

 

//2.创建SparkContext,该对象是提交Spark App的入口

    val sc = new SparkContext(conf)
    //3.使用sc创建RDD并执行相应的transformationaction
    sc.textFile(args(0)).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_, 1).sortBy(_._2, false).saveAsTextFile(args(1))

//4.关闭连接

    sc.stop()
  }
}

3)打包插件

<plugin>

                <groupId>org.apache.maven.plugins</groupId>

                <artifactId>maven-assembly-plugin</artifactId>

                <version>3.0.0</version>

                <configuration>

                    <archive>

                        <manifest>

                            <mainClass>WordCount</mainClass>

                        </manifest>

                    </archive>

                    <descriptorRefs>

                        <descriptorRef>jar-with-dependencies</descriptorRef>

                    </descriptorRefs>

                </configuration>

                <executions>

                    <execution>

                        <id>make-assembly</id>

                        <phase>package</phase>

                        <goals>

                            <goal>single</goal>

                        </goals>

                    </execution>

                </executions>

      </plugin>

4)打包到集群测试

bin/spark-submit \

--class WordCount \

--master spark://hadoop102:7077 \

WordCount.jar \

/word.txt \

/out

3.2 本地调试

本地Spark程序调试需要使用local提交模式,即将本机当做运行环境,MasterWorker都为本机。运行时直接加断点调试即可。如下:

创建SparkConf的时候设置额外属性,表明本地执行:

val conf = new SparkConf().setAppName("WC").setMaster("local[*]")

    如果本机操作系统是windows,如果在程序中使用了hadoop相关的东西,比如写入文件到HDFS,则会遇到如下异常:

 

出现这个问题的原因并不是程序的错误,而是用到了hadoop相关的服务,解决办法是将附加里面的hadoop-common-bin-2.7.3-x64.zip解压到任意目录

 

IDEA中配置Run Configuration,添加HADOOP_HOME变量

 

转载于:https://www.cnblogs.com/dflmg/p/10430136.html

你可能感兴趣的文章
银行卡的三个磁道【转】
查看>>
架构师素养及从小菜进阶架构(CTO)的书籍【转】
查看>>
Linux中添加、修改和删除用户和用户组
查看>>
Failed to start /etc/rc.d/rc.local Compatibility
查看>>
Monad (functional programming)
查看>>
Zmodem协议
查看>>
创建第一个servlet程序--HelloServlet
查看>>
Pycharm按装
查看>>
Hive 练习 简单任务处理
查看>>
解决eclipse maven 项目重新下载包这个问题
查看>>
MIME TYPE
查看>>
appium定位h5
查看>>
获取POM.XML依赖的JAR包
查看>>
文本聚类
查看>>
String 类型的值能够被反射改变从而引发的意外事件
查看>>
Spring之Bean的作用域与生命周期
查看>>
【WPF】添加自定义字体
查看>>
Android学习-- 基于位置的服务 LBS(基于百度地图Android SDK)--定位SDK
查看>>
嵌入式Linux内时区配置
查看>>
SignarL服务器端发送消息给客户端的几种情况
查看>>